

Ethernet—The 802.3 family of physical and data link (OSI layer 2) standards for hard-wired nets. The same L2 protocols defined in 802.3 are used for all physical cable types and transmission speeds.

IEEE #	Name	DESCRIPTION	Speed	SPEED CABLE & MAX LENGTH	
802.3 i	10BASE-T	Ethernet	10 Mbps	Copper, 100 m	
802.3 u	100BASE-T	Fast Ethernet	100 Mbps	Copper, 100 m	
802.3 z	1000BASE-LX	Gigabit Ethernet	1 Gbps	Fiber, 5000 m	
802.3 ab	1000BASE-T	Gigabit Ethernet	1 Gbps	Copper, 100 m	
802.3 an	10GBASE-T	10 Gig Ethernet	10 Gbps	Copper, 100 m	

Frame—An L2 (OSI Layer 2) data structure including header, data, and trailer

SOHO (Small Office / Home Office)—i.e. a small network

AP (Access Point)-Wireless network radio for the 802.11 family of standards

LAYER 1 (PHYSICAL) STANDARDS

UTP (Unshielded Twisted Pair) Pinouts for routers and hosts

RJ-45 Pins	10BASE-T & 100BASE-T	GIGABIT
1,2	Send (routers, hosts, wireless APs) or Receive (switches & hubs)	Send, Receive
3,6	Receive (routers, hosts, wireless APs) or Send (switches & hubs)	Send, Receive
4,5	N/C	Send, Receive
7,8	N/C	Send, Receive

Straight-through Cable—Pin 1 goes to pin 1, etc. Good for connecting dissimilar devices, like a computer to a switch.

Crossover Cable—Connects the pins 1&2 to 3&6 for wiring like devices directly to each other, e.g. two routers.

Crosstalk—Interference between pairs of wires in the same cable due to EMI (ElectroMagnetic Interference)

RJ-45—Common name for the connector on UTP Ethernet cables.

NIC (Network Interface Card)

SFP+ (Small Form-factor Pluggable)—a family of transceivers that can be plugged into generic ports on Cisco devices to offer flexible media choices.

LAYER 2 (DATA LINK) PROTOCOLS

MAC (Media Access Control) Address-48-bit address used by Ethernet.

OUI (Organizationally Unique Identifier)—24-bit number assigned by IEEE to Ethernet equipment manufacturers. Used as the first half of a MAC address, helping to ensure that all unicast MAC addresses are unique.

Group (non-unicast) MAC Addresses:

- Broadcast—FFFF.FFFF.FFFF goes to all devices on the LAN
- Multicast—goes to a subset of devices that have volunteered to receive.

Ethernet Frame

Field	BYTES	PURPOSE
Preamble	7	Alternating 1s and 0s to set bit-pace
Start of Frame (SOF) Delimiter	1	Announces that the next byte begins the destination address
Destination Address	6	MAC address
Source Address	6	
Length	2	Length of the Data field
Data	46-1500	802.2 header and data. Can be padded to meet minimum size
FCS	4	Frame Check Sequence for error detection

- Frame Size—The preamble and start of frame delimiter aren't counted. The maximum frame size is 1518 bytes (18 bytes of Ethernet header + 1500 bytes of data payload). The minimum is 64 bytes (18 + 46). You'll see the 1500 byte payload maximum referred to as the MTU (Maximum Transmission Unit) from the Layer 3 (IP) perspective.
- Ethertype Field—tells what kind of Layer 3 content is in the payload. Formerly this was in what is now the length field. Now it is usually in an 802.2 header that is part of the data field.
- FCS (Frame Check Sequence) Error *Detection*—On receipt, if the computed FCS doesn't match the one in the frame trailer, the frame is discarded. Upper layer protocols like TCP can resend the (now missing) frame to achieve error *recovery*.
- Duplex—With switches, separate pairs can be used for send and receive, allowing full-duplex. Hubs send and receive on the same pair, forcing half-duplex operation where only one end of the link can talk at once. Hubs are considered Layer-one devices; they electrically amplify and distribute a received signal out all other ports without understanding or regenerating it. If you know a hub is attached to a port on your switch or router, you should force half-duplex operation on that port.

CSMA/CD (Carrier-Sense Multiple Access / Collision Detection)—Used in half duplex. A Sender:

- Listens until the line is silent
- Begin sending the frame while listening for a collision
- On Collision, all sending nodes:
 - Send a jamming signal announcing the collision
 - Back off for a random period of time and begin at the top when time's up