
Rev. 20180926.150941 5. TCP / UDP
ccnacookbook .com

The transport layer (L) primarily deals with error recovery and flow control, but those are only
provided by . Both  and  provide multiplexing via ports—the ability to segregate
received segments by port number and give them to the correct application. A segment can also
be called an L4PDU (Layer 4 Protocol Data Unit). The L  header protocol field tells whether
, , or some other L protocol is in use.

Socket—traffic is uniquely identified as belonging to a given conversation or data stream based on a
unique combination of  address, transport protocol (for example  or ), and an L port
number.

Connection-Oriented Protocol—TCP sets up a conversation so that data segments are expected and
can be noticed as missing if they don't arrive. See the 3-way handshake, described under .

Connectionless Protocol—UDP just blurts out whatever it has to say, hoping that it arrives and that
the pace doesn't overwhelm the recipient's buffers.

W E L L K N O W N A P P L I C A T I O N S A N D P O R T N U M B E R S

Server processes that have a standardized (by the ) will open that port on their computer for
listening when they start running. Remember that a socket relies both on the choice of  or
 and the port number for uniqueness; there's no relationship between  and  port
numbers—only coincidences. Some well known port numbers include:

TCP Port UDP Port Application

20 FTP (File Transfer Protocol) Data

21 FTP Control

22 SSH

23 Telnet

25 SMTP

53 53 DNS—Server tells client what IP address corresponds to a domain name.
(TCP and UDP are used for different purposes / situations)

67 DHCP Server

68 DHCP Client

69 TFTP (Trivial File Transfer Protocol)—traditionally used to move operating
systems and configurations onto Cisco devices.

80 HTTP (Web)

110 POP v3

161 SNMP—Used for monitoring and control of network devices.

443 SSL

514 Syslog

 (-)  &  ©-   5 - 1

T C P

TCP (Transport Control Protocol) [RFC 793]—provides a number of services to applications that
UDP doesn't, including
• Error recovery via retransmission—segments are numbered and those not acknowledged are

resent
• Ordered Data Reconstruction—the same segment numbers are used to put the pieces of a

data stream back in order
• The receiver can manage the pace of transmission (windowing and acknowledging only when

ready)
• Connection Establishment—port numbers and beginning sequence numbers are shared

before any data is sent
TCP header—20-bytes. Contains no addresses. Don't memorize field names or locations.

Name BYTES Description

Source Port 2

Destination Port 2

Sequence # 4 Segment number of the segment being sent

Acknowledgement # 4 Segment number of the next expected segment

Offset + (reserved) + Flag Bits 2

Window 2

Checksum 2

Urgent 2

Notice that acknowledgements use the number of the next expected segment. You should also
know that sequence numbers are incremented not by 1, but by the size of the segment in bytes.

TCP Connection Establishment—also called the three-way handshake—uses the SYN
(SYNchronize) and ACK (ACKnowledge) flags in the  header along with the sequence and
acknowledgement number fields to agree on a starting value for segment numbering from each
side. The starting sequence numbers are essentially random and will almost certainly not match.
An example handshake between hosts A and B could look like:

SENDER SYN ACK Sequence # Ack # DESCRIPTION

A X 734 A tells B it wants to establish a connection and will
begin its segment numbering at 734

B X X 18,193 754 B will begin numbering its segments at 193,
synchronizes its expectations for the other side's
numbering to 734, and acknowledges segment 734 by
asking for the next segment, which will be numbered
754, since there was no body and a TCP header is 20
bytes long.

A X 754 18,213 A acknowledges that B will begin numbering segments
at 193 by asking for the next segment, number 213.

TCP Connection Tear-Down—The FIN (FINished) bit can be used to end a connection.
Windowing—The recipient can tell the sender how much data to send per acknowledgement by

putting a value in the window field of the  header.
5 - 2 ©-    &   (-)

U D P

UDP (User Datagram Protocol)—Has a smaller header than , making it more efficient for uses
that don't require or can't use error recovery. For example, in real-time streaming applications, a
retransmitted segment would be too late to be of any use. UDP doesn't use the three-way
handshake because it is connectionless, again cutting down on overhead and lag for quick
notifications and queries. Additionally,  doesn't provide windowing, reordering of received
data, and no segmentation of large blocks of data; chunks need to already be less than the
maximum size.
All  provides is best effort delivery of messages with multiplexing via port numbers in a
streamlined package.

The UDP Header—only 8 bytes:
Name BYTES Description

Source Port 2

Destination Port 2

Length 2

Checksum 2

A P P L I C A T I O N S

URI (Uniform Resource Identifier)—Also known as a URL (…Locator). Example dissected below:
Scheme Authority Path

http:// www.cisco.com /index.html

(web protocol) (server's name) (web page)

Steps to reach a web page:
• DNS—the server name in the  would be sent to a  server for resolution into an 

address. This is a  request on port 53.
• TCP handshake establishes connection between client (browser) and web server
• Browser sends an  "get" request
• Server sends back the file (page)

 (-)  &  ©-   5 - 3

	WELL KNOWN APPLICATIONS AND PORT NUMBERS
	TCP
	UDP
	APPLICATIONS

